

MCR-003-001544

Seat No.

## B. Sc. (Sem. V) (CBCS) Examination

May / June - 2018

S - 503 : Statistics Inference (New Course)

Faculty Code: 003

Subject Code: 001544

Time :  $2\frac{1}{2}$  Hours]

[Total Marks: 70

Instructions: (1) Question No. 1 carries 20 marks.

- (2) Question No. 2 and 3 each carries 25 marks.
- (3) Students can use their own scientific calculator.
- Filling the blanks and give short answers:

  (Each 1 mark)
  - (1) Define Parameter space.
  - (2) Name different criteria of good estimators.
  - (3) Write likelihood function of  $f(x,\theta) = \theta(1-\theta)^{x-1}$
  - (4) Write likelihood function of

$$f(x,\theta) = {\binom{-k}{x}} \theta^k (\theta - 1)^x; 0 \le \theta \le 1.$$

(5) Obtain Cramer-Rao lower bound of variance of unbiased estimator of parameter of  $f(x, \theta) = \theta x^{\theta-1}$ 

| (6) | is an         | unbiased | estimator | of A | $p^2$ in | Binomial |
|-----|---------------|----------|-----------|------|----------|----------|
|     | distribution. |          |           |      |          |          |

- (7) If  $f(x;\theta)$  is a family of distributions and h(x) is any statistic such that E[h(x)] = 0, then  $f(x;\theta)$  is called \_\_\_\_\_.
- (8) If  $S = s(X_1, X_2, X_3, ..., X_n)$  is a sufficient statistic for  $\theta$  of density  $f(x;\theta)$  and  $f(x_i;\theta)$  for i = 1, 2, 3, ..., n can be factorised as  $g(s,\theta)h(x)$ , then  $s(X_1, X_2, X_3, ..., X_n)$  is a \_\_\_\_\_\_.
- (9) If a random sample  $x_1, x_2, x_3, ..., x_n$  is drawn from a population  $N(\mu, \sigma^2)$ , the maximum likelihood estimate of  $\mu$  is \_\_\_\_\_\_.
- (10) Let  $x_1, x_2, x_3, ..., x_n$  be a random sample from a density  $f(x, \theta) = \theta e^{-\theta x}$ . Then the Cramer-Rao lover bound of variance of unbiased estimator is \_\_\_\_\_.
- (11) If  $T_n = t_n(X_1, X_2, X_3, ... X_n)$ , an estimator of  $\tau(\theta)$ , is such that  $\lim_{n \to \infty} \left[ T_n \tau(\theta) \right]^2 = 0$ ,  $T_n$  is said to be \_\_\_\_\_ consistent.
- (12) A sample constant representing a population parameter is known as \_\_\_\_\_.
- (13) If  $T_n$  is an estimator of a parametric function  $\tau(\theta)$ , the mean square error of  $T_n$  is equal to \_\_\_\_\_\_.

- (14) For a rectangular distribution  $\frac{1}{(\beta \alpha)}$ , the maximum likelihood estimates of  $\alpha$  and  $\beta$  are \_\_\_\_\_ and \_\_\_ respectively.
- (15) If  $x_1, x_2, x_3, ... x_n$  is a random sample from an infinite population and  $S^2$  is defined as  $\frac{\sum (x_i \overline{x})^2}{n}, \frac{n}{n-1}S^2$  is an \_\_\_\_\_ estimator of population variance  $\sigma^2$ .
- (16) The estimator of  $\sigma^2$  based on random sample  $x_1, x_2, x_3, ..., x_n$  from a population  $N(\mu, \sigma^2)$  by method of moments is \_\_\_\_\_\_.
- (17) If  $T_n$  is an estimator of a parameter  $\theta$  of the density  $f(x;\theta)$  the quantity  $E\left[\frac{\partial}{\partial \theta}\log f(x;\theta)\right]^2$  is called the \_\_\_\_\_.
- (18) A single value of an estimator for a population parameter  $\theta$  is called its \_\_\_\_\_ estimate.
- (19) Let there be a sample of size n from a normal population with mean  $\mu$  and variance  $\sigma^2$ . The efficiency of median relative to the mean is \_\_\_\_\_\_.
- (20) The estimate of the parameter  $\lambda$  of the exponential distribution  $\lambda e^{-\lambda x}$  by the method of moments is \_\_\_\_\_.

- 2 (A) Write the answer any three: (Each 2 marks)
- 6

9

- (1) Define Sufficiency.
- (2) Define Most Powerful Test (MP test).
- (3) Show that sample mean is more efficient than sample median for Normal distribution.
- (4) Define Complete family of distribution.
- (5) Obtain an sufficient estimator of  $\theta$  by for the following distribution

$$f(x;\theta) = \theta^{x} (1-\theta)^{(1-x)}; x = 0,1$$

(6) Obtain an unbiased estimator of  $\theta$  by for the following distribution

$$f(x; \theta) = \frac{1}{\theta} e^{-\left(\frac{x}{\theta}\right)}; 0 \le x \le \infty, \theta > 0$$

- (B) Write the answer any three: (Each 3 marks)
  - (1) Show that  $\frac{x(x-1)}{n(n-1)}$  is an unbiased estimator of  $p^2$  in Binomial distribution.
  - (2) Obtain MLE of parameter p for the following distribution :  $f(x; p) = pq^x$ ;  $x = 0, 1, 2, ... \infty$
  - (3) Let  $x_1, x_2, x_3, ..., x_n$  be random sample taken from  $N(\mu, \sigma^2)$  then find sufficient estimator of  $\mu$  and  $\sigma^2$ .
  - (4) Obtain an unbiased estimator of population mean of  $\aleph^2$  distribution.

- (5) If A is more efficience than B then prove that Var(A) + Var(B-1) = Var(B).
- (6) Use the Neyman Pearson lemma to obtain the best critical region for testing  $H_0: \lambda = \lambda_0$  against  $H_1: \lambda = \lambda_1$  in the case of Poisson distribution with parameter  $\lambda$ .
- (C) Write the answer any two: (Each 5 marks) 10
  - (1) State Neyman-Pearson lemma and prove it.
  - (2) Obtain MVBE of  $\sigma^2$  for Normal distribution.
  - (3) For the double Poisson distribution

$$P(X = x) - \frac{1}{2} \frac{e^{-m_1} m_1^x}{x!} + \frac{1}{2} \frac{e^{-m_2} m_2^x}{x!}; 0, 1, 2, \dots$$

Show that the estimator for  $m_1$  and  $m_2$  by the method of moment are  $\mu_1' \pm \sqrt{\mu_2' - \mu_1' - (\mu_1')^2}$ 

- (4) Construct SPRT of Poisson distribution for testing  $H_0: \lambda = \lambda_0$  against  $H_1: \lambda = \lambda_1 (> \lambda_0)$ .
- (5) If  $T_1$  and  $T_2$  be two unbiased estimator of  $\theta$  with variance  $\sigma_1^2, \sigma_2^2$  and correlation  $\rho$ , what is the best unbiased linear combination of  $T_1$  and  $T_2$  and what is the variance of such a combination?
- 3 (A) Write the answer any three: (Each 2 marks)
  - (1) Show that  $\sum x_i$  is a sufficient estimator of  $\theta$  for Geometric distribution.
  - (2) Define Uniformly Most Powerful Test (UMP test).
  - (3) Define ASN function of SPRT.

6

- (4) Define Unbiasedness.
- (5) Define Efficiency.
- (6) Obtain likelihood function of Negative Binomial distribution.
- (B) Write the answer any three: (Each 3 marks) 9
  - (1) Obtain unbiased estimator of  $\frac{kq}{p}$  of Negative Binomial distribution.
  - (2) Prove that  $E\left(\frac{\partial log L}{\partial \theta}\right)^2 = -E\left(\frac{\partial \log L}{\partial \theta^2}\right)$ .
  - (3) Obtain estimator of  $\theta$  by method of moments in the following distribution

$$f(x;\theta) = \frac{1}{\theta}e^{-\left(\frac{x}{\theta}\right)}; 0 \le x \le \infty, \theta > 0$$

- (4) Obtain MVUE of parameter  $\theta$  for Poisson distribution.
- (5) Give a random sample  $x_1, x_2, x_3, ..., x_n$  from distribution with p.d.f.  $f(x;\theta) = \frac{1}{\theta}; 0 \le x \le \theta$ . Obtain power of the test for testing  $H_0: \theta = 1.5$  against  $H_1: \theta = 2.5$  where  $c = \{x; x \ge 0.8\}$ .
- (6) Obtain Operating Characteristic (OC) function of SPRT.

(C) Write the answer any two: (Each 5 marks)

- (1) State Crammer-Rao inequality and prove it.
- (2) Give a random sample  $x_1, x_2, x_3, ..., x_n$  from distribution with p.d.f.

$$f(x;\theta) = \theta e^{-\theta x}$$
;  $0 \le x \le \infty, \theta > 0$ 

Use the Neyman Pearson Lemma to obtain the best critical region for testing  $H_0: \theta = \theta_0$  against  $H_1: \theta = \theta_1$ .

(3) Estimate  $\alpha$  and  $\beta$  in the case of Gamma distribution by the method of moments

$$f(x; \alpha, \beta) = \frac{\alpha^{\beta}}{\Gamma \beta} e^{-ax} x^{\beta - 1}; x \ge 0, \alpha \ge 0$$

- (4) Construct SPRT of Binomial distribution for testing  $H_0: \lambda = \lambda_0$  against  $H_1: \lambda = \lambda_1 (> \lambda_0)$ . Also obtain OC function of SPRT.
- (5) Obtain Likelihood Ration Test:

Let  $x_1, x_2, x_3, ..., x_n$  random sample taken from  $N(\mu, \sigma^2)$ . To test  $H_0: \sigma^2 = \sigma_0^2$  against  $H_1: \sigma^2 \neq \sigma_0^2$